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Abstract: Virtual high-throughput screening (vHTS) is a powerful technique for identifying hit molecules as starting 

points for medicinal chemistry. Numerous successful applications of vHTS have been published using a large variety of 

methodologies. This review attempts to identify the essential factors for successful virtual screening in the hit identifica-

tion phase. 
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1. INTRODUCTION 

 The initiation of a medicinal chemistry program in phar-
maceutical research generally requires some rational starting 
point, usually represented by an initial hit structure. Most 
commonly today, such a hit compound derives from the 
screening of a physical or virtual compound library. High-
throughput screening (HTS) directly furnishes applicable 
biological activity data, albeit at high cost in terms of money, 
time, and secondary assays to identify false-positives [1]. 
Replacing in-vitro experiments with suitable in-silico mod-
els, virtual high-throughput screening (vHTS) provides a 
time- and cost-efficient alternative to establish viable starting 
points for medicinal chemistry [2]. A multitude of success 
stories have been reported in literature, illustrating the valid-
ity of this approach. The methodology itself, however, still 
experiences rapid development, making it difficult for syn-
thetic chemists to fully assess the current potential of vHTS 
in their projects. This review summarizes current case stud-
ies and aims to distil the essential factors for successful vir-
tual screening, thus enabling the medicinal chemist to inte-
grate the methodology into his work flow. 

 Virtual screening (VS) and virtual high-throughput scree-
ning (vHTS) in particular are defined as the search for the 
molecules within a database of compounds that match a given 
query structure which may be a pharmacophore [3], a struc-
ture of another active ligand [4], or a receptor structure [5, 
6]. The choice of a particular method is often dictated by the 
level of information, e.g. with respect to structural data, and 
economic restraints on computing resources (see Fig. (1)). 

  While both pharmacophore-based and ligand-based scree-
ning identify the compounds most similar to the query struc-
ture, protein structure-based screening (e.g., protein-ligand 
docking) returns compounds which are complementary to the 
query structure, i.e. the receptor’s ligand binding site. All 
types of vHTS require a fast scoring function to compute 
either similarity or complementarity to a given query struc-
ture. Obviously, one expects that the score calculated by a 
scoring function somehow translates into biological affinity 
in order to identify hits in a bioassay. This is, however, a 
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Fig. (1). The choice of virtual screening methods is guided by three 

parameters: number of known active small molecules, number of 

protein cystal structures available, and computing resources. 

rather intricate problem [7, 8, 9], leading to the paradox that 
vHTS is able to reveal suitable compounds from huge data-
bases, but most often no significant correlation between cal-
culated scores and experimentally determined binding affini-
ties can be detected within a set of top scorers. Therefore, at 
least from a practical point of view, the identification of vi-
able hits on a given target is the criterion for successful vir-
tual screening. A correspondence between score and binding 
affinity within a set of predicted hit compounds is generally 
not to be expected. 

 Virtual screening should enable the initiation of a me-
dicinal chemistry program with a reasonable probability for 
identifying a lead compound. More precisely, VS has to 
identify at least one structure that (i) is biologically active, 
and (ii) allows for exploitation by medicinal chemistry. Us-
ing this definition, this review focuses on the hit identifica-
tion phase of the drug design process. A timely update is 
given on recent developments of vHTS methodology and 
application. The results of this survey of current literature are 
discussed in terms of factors that increase the probability of 
success. 
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2. HIT IDENTIFICATION BY VIRTUAL SCREENING 

2.1. Overview 

 The application of vHTS for hit and lead identification 
follows a typical sequence of processes (see Fig. (2)). The hit 
identification phase starts with vHTS of a database of choice. 
After an initial ranking list has been prepared, a selection of 
compounds is assembled for biological testing. Experiments 
then reveal the hit compounds that are biologically active. 
After the hit identification, the hit-to-lead process [10] usu-
ally starts by exploring the chemical space around the proven 
hits: hit-related compounds are identified by focused virtual 
screening or by manual database search, and subsequently 
assayed for biological activity. This back-screening process 
provides data to create an early QSAR which helps the me-
dicinal chemists in finally identifying a lead compound. 

  The present review focuses on vHTS, selection of com-
pounds, and identification of real positives. Table 1 summa-
rizes the most important parameters of virtual screening as 
described in recently published case studies: target, virtual 

screening approach, type of screened database, and the soft-
ware used. Additionally, filter criteria are listed. Methodo-
logy of the bioassay, hit criteria, and hit rates are given as 
well. A representative hit structure is shown in order to illus-
trate the chemistry involved. These data will be analyzed in 
the following sections, taking into account recent methodo-
logical advances and evaluation studies. 

2.2. Software 

 It is apparent from Table 1 that a multitude of approaches 
can be applied for virtual screening. Most of the VS applica-
tions cited in Table 1 are based on protein-ligand docking. 
For docking, several established software packages exist, e.g. 
DOCK [11], AutoDock [12], FlexX [13], Gold [14], QXP 
[15], ICM [16], Slide [17], Glide [18], FRED [19], and Sur-
flex [20], which are still being optimized: e.g. an extra-
precision Glide protocol has been published along with some 
promising results [21] and the FlexX suite of programs was 
extended by FlexNovo [22]. In the last two years several new 
approaches have been reported: for example, eHITS [23] 
exhaustively searches the conformation space by first dock-

ing all rigid fragments of a ligand into all sub pockets of an 
active site, then identifying sets of docked fragments that can 
be matched by the complete ligand, and finally constructing 
ligand poses in the active site by joining the fragments cor-
rectly. This methodology is reported to improve the binding 
mode accuracy considerably compared to Gold and FlexX. 
MolDock [24] applies a differential evolution algorithm to 
identify docked binding modes. Again, it is reported to im-
prove binding mode accuracy in comparison to Glide, Gold, 
Surflex, and FlexX. PSI-DOCK [25] uses a combination of 
taboo search and a genetic algorithm for docking resulting in 
a binding mode accuracy comparable to Gold and Glide. 
Recently, the protein-protein docking program ROSETTA-
DOCK, which applies a Monte Carlo sampling of rigid body 
and side chain rotamer degrees of freedom, was extended for 
protein-ligand docking and achieved a binding mode repro-
duction rate of 71-80% within a database of 100 protein-
ligand complexes [26]. In contrast to the above mentioned 
software, ProPose [27] uses an established incremental con-
struction algorithm. The main focus of ProPose is to provide 
a highly flexible platform for virtual screening, allowing for 

an efficient combination of different approaches like dock-
ing, ligand alignment and pharmacophores [28]. 

 It should be noted at this point that – according to Warren 
et al. [9] – a good performance in reproduction of experi-
mental binding modes does not necessarily impart success in 
virtual screening, although the contrary has been suggested 
as well [29]. Additionally, the study of Warren et al. clearly 
demonstrates that no single software tool performs well on 
all targets under consideration.  

 Ligand-based approaches for virtual screening are mainly 
used in case of no structural information about the target 
being available. During the last two years, some new devel-
opments have been reported in the field of molecular super-
positioning, i.e. ligand-ligand alignment: for example, BRU-
TUS [30, 31] superimposes small molecules on molecular 
interaction fields (e.g., electrostatic fields) derived from a 
template. In principle, it generates a rigid molecule – rigid 
template alignment, and the conformational flexibility of the 
molecule has to be considered by the pre-generation of con-
formations. The algorithm is fast enough for virtual screen-

Fig. (2). General outline of typical hit identification and hit-to-lead processes. 
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Table 1. Hit Identification by Virtual Screening: Recent Case Studies 

Target 

(Class [a]) 

VS [b] Database 

(Size) 

Software 

Main

Auxiliary  

Filter [c] Assay  

(Hit Criteria) 

Active / 

Tested / 

Screened 

Representative Hit 

 cpd., Activity 

Ref. 

11 -hydroxy-steroid-

dehydrogenase type 1,

11 -HSD 1  

(E)

P 12 commercial 

libraries 

(1,776,579 in 

total) 

Catalyst h_don  5, h_acc 

10, no match with 

hERG pharma-

cophore, clogP  5,

logS  -5, manual 

selection 

radioactive assay

(inhibition 70%

at 10 M)

7 / 

30 / 

1,776,579 

1, IC50 = 144 nM 

[d] 

1A adrenergic  

receptor 

(GPCR) 

R, H proprietary Gold,

Catalyst [e] 

b_rot  9, 

MW < 600, match of

1A pharmacophore

radioactive assay

(inhibition 

> 50% at 10 M)

38 / 

80 / 

22,950 

2, Ki = 1.4 nM 

[f]

acetohydroxy acid 

synthase, AHAS (E) 

R ACD-3D [g] 

(~164,000) 

Dock 4.0,

AutoDock 

no metals, 

XlogP –0.5 … 3.0,

visual inspection 

colorimetric 

assay  

(Ki,app < 100 M)

3

14 / 

n.d. 3, Ki,app = 15 M

[h]

angiotensin converting

enzyme 2, ACE2  

(E)

P commercial 

compounds 

(3,787,666; unique

~2,500,000) 

Catalyst,

eHITS,  

Q-fit [i] 

post-filtering: shape,

exclusion volume, 

h_acc 

fluorescence 

(inhibition > 70%

at 200 M)

7 / 

17 / 

3,787,666 

4, IC50 = 62 M

[j]

antimalarial activity 

(U) 

L, 

QSAR

(LDA,

MLR)

Merck Index [k]

(~10,000) 

BMDP (statis-

tics software)

only drugs with 

therapeutic properties

in-vitro testing

against P. falci-

parum

(IC50 < 50 M)

16 / 

27 / 

2000 

monensin and nigericin with IC50s of 0.327 

and 0.425 nM, respectively 

[l] 

B. fragilis zinc -

lactamase, CcrA  

(E)

R fragment-like 

subset of ZINC 

[m]

(~10,000) 

DOCK MW < 250,  

logP –2 ... 3,  

h_don <3,  

h_acc <6,  

b_rot <3 

spectrophoto-

metric assay 

(Ki < 120 M)

5 / 

15 / 

33,000 
5, Ki = 2 M

[n]

B. subtilis RNA methyl-

transferase,  

C.  pneumonia di-

methyl-adenosine 

transferase (E) 

R SPECS, May-

bridge  [o] 

(~300,000) 

FlexX no reactive groups, no

otherwise undesirable

groups for drugs 

cell-based C.

pneumoniae

assay (inhibition

>50% at 50 M)

8

33 / 

n.d. 

6, inhibition = 90% at 50 M

[p] 

-catenin – Tcf4 an-

tagonists 

(PP) 

R subset of Pharma-

cia & Upjohn 

collection 

(90,000) 

FLO-QXP Ro5, availability, low

biological promiscuity

(active in <4 non-

antibiotic screens),

solubility > 50 M,

visual inspection 

NMR (mixtures

at 50 M), ITC

(at 100 M)

3 / 

22 / 

17,000 

7, KD = 450 nM 

[q]

casein kinase 2 

CK2  

(E)

R proprietary 

database of 

naturally occurring

compounds 

(~2000) 

MOE-Dock

[r], Glide, 

FRED, Gold

consensus scoring radioactive assay

(n.d.) 

n.d. /  

n.d. /  

~2000 

8, Ki = 20 nM 

[s]

checkpoint kinase 1, 

Chk1  

(E)

R commercial 

compound 

libraries 

(1,600,000) 

rDock

(docking 

software) 

pre-filter: MW 250 -

550, b_rot 0 - 6, no

reactive groups that

interfere with assay;

post-filter: visual 

inspection, diversity

radioactive assay,

scintillation 

readout   

(IC50 < 50 M)

9 / 

1179 / 

~700,000 

9, IC50 = 13.4 M

[t]

cyclophilin A, CypA 

(E)

R, P ACD  (296,387) FlexX,

ISIS Base [u]

pharmacophore, 

visual inspection, 

MW < 650 

spectrophoto-

metric assay 

(inhibition 80%

at 10 M)

5 / 

31 / 

3129 

10, IC50 = 303 nM 

[v] 
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(Table 1. Contd….) 

Target 

(Class [a]) 

VS [b] Database 

(Size) 

Software 

Main

Auxiliary 

Filter [c] Assay  

(Hit Criteria) 

Active / 

Tested / 

Screened 

Representative Hit 

 cpd., Activity 

Ref. 

cyclophilin A, CypA  

(E)

R focused library  

(255)  

LD1.0 

(docking  

software) 

Ro5, MW < 600 surface plasmon

resonance  

(Kd < 50 M)

16 / 

16 / 

255

11, Kd = 76 nM 

[w]

cyclophilin A, CypA  

(E)

R SPECS 

(~280,000) 

Dock 4.0,

FlexX 

drug-likeness surface plasmon

resonance  

(Kd < ~50 M)

15 / 

82 / 

85,000 

12, Kd = 0.58 M

[x]

cytochrome 2D6,  

CYP2D6 

(E)

R, H proprietary (5,760;

incl. tautomers 

and stereo-

isomers: 19,619) 

Gold diversity fluorescence 

based assay  

(IC50 < 10 M)

5 / 

8 / 

19,619 

13, IC50 = 0.06 M

[y] 

dipeptidyl peptidase IV,

DPP-IV  

(E)

R ACD, in-house 

database  

(n.d.) 

FlexX-Pharm primary, aliphatic 

amines, other filters 

n.d. 

n.d. 

(IC50 < 50 M)

6. / 

n.d. / 

~10,000 

14, IC50 = 2.3 M

[z]

falcipain  

2 and 3, 

FP2, FP3  

(E)

R, H ACD 

(355,000) 

Gold pre-filter: no metals, 

no toxic functional 

groups, ADME filters,

Ro5; post-filter:  

visual inspection  

fluorescence 

based assay  

(FP2 IC50

< 55 M)

18 /  

100 / 80,000

15, IC50 = 1.4 M (FP2) and 11.4 M (FP3) 

[aa] 

glycogen synthase 

kinase 3,  

GSK-3  

(E)

R proprietary 

(16,299) 

FlexX, Flex-

Pharm, 

FlexE 

MW 200-800,  

logP  7, 

b_rot  < 16, 

diversity filter 

luminescence 

(inhibition >70%

at 5 M)

21 / 

162 / 

16299 
16, inhibition = 90% at 5 M

[bb] 

Inducers 

of foetal  

haemoglobin 

(U) 

P, PR SPECS [cc] 

(subset, 13,000) 

FLO-QXP one acid group and 

HAC  25 

reporter gene 

assay (relative 

gene activity > 

100%) 

23

26 / 

630
17, relative gene activity = 522% 

[dd] 

Kv1.5  

(C) 

P, H proprietary UNITY [ee] b_rot   10, Ro5, 

visual inspection 

voltage-clamp 

(IC50 < 10 M)

5 / 

244 / 

n.d. 

structure not disclosed 

IC50 = 0.9 M

[ff]

lipoxygenase  

12-hLO,  

15-hLO  

(E)

R, H ChemBridge [gg]

(50,000) 

Glide visual inspection spectrophoto-

metric assay (IC50

< 20 M)

3 / 

20 / 

50,000 

18, 15-hLO IC50 = 6.8 M

[hh] 

malic enzyme,  

ME  

(E)

R, H combinator.  

library (112,000) 

FlexX ADMET properties, 

diversity 

continuous 

spectrophoto-

metric assay (IC50

< 10 M)

6 / 

n.d. / 

10,000 

19, IC50 = 0.15 M

[ii]

MDM2-p53 antagonists

(PP) 

R, P NCI  

(~250,000) 

Gold,

in-house 

pharmaco-

phore query 

tool 

pharmacophore, cpd.

availability, drug-

likeness, visual 

inspection, MW 200-

600, b_rot 1-10, h_acc

< 10, #N/#O > 1 

fluorescence-

polarization 

based assay  

(Ki < 10 M)

10 / 

67 / 

2599 (R), 

110,000 (P) 

20, Ki = 120 nM 

[jj]

methionyl-tRNA 

synthase, MetRS (E) 

L, P ChemDiv [kk] 

(508,143) 

Chemo-soft

[ll], Sybyl  

n.d. scintillation 

proximity assay 

(IC50 < 50 M)

4 / 

91 / 

508,143 

21, IC50 = 0.237 M
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(Table 1. Contd….) 

Target 

(Class [a]) 

VS [b] Database 

(Size) 

Software 

Main

Auxiliary 

Filter [c] Assay  

(Hit Criteria) 

Active / 

Tested / 

Screened 

Representative Hit 

 cpd., Activity 

Ref. 

monoamine oxidase A,

MAO-A  

(E)

L, 

QSAR

(LDA)

small library of

coumarins (n.d.)

March-Inside

[nn] 

different levels of 

structural complexity

spectrophoto-

metric assay (IC50

< 25 M)

9 / 

15 / 

n.d.  
22, IC50 = 0.04 M

[oo]

monoglyceridelipase 

(E)

R, H, P Maybridge, 

LeadQuest [pp]

(n.d.) 

UNITY, Gold,

BRUTUS 

MW  450 substrate con-

sumption (HPLC)

0 / 

51 / 

n.d. 

no inhibitor of MGL-like enzyme found, but

hits were shown to be FAAH inhibitors 

[qq]

Myco-bacterium tuber-

culosis, 

MTB

(U) 

L, P, 

QSAR

(RP) 

Asinex [rr] 

(~200,000) 

Cerius [ss] 

Catalyst 

pharmacophore, Ro5 full inhibition of

MTB growth 

(MIC) 

1/ 

9 / 

43,845 

23, MIC = 25 g/ml 

[tt]

Myco-bacterium tuber-

culosis, 

MTB (U) 

L, P, 

QSAR

(RP) 

combinatorial 

library 

(5,177,717) 

Cerius, Cata-

lyst 

diversity,  Ro5, OTFO

library design [uu] 

full inhibition of

MTB growth 

(MIC) 

1/ 

4 / 

5000 
24, MIC = 25 g/ml 

[v v]

P. diminuta 

phospho-triesterase, 

PTE  

(E)

R ACD 

(167,000) 

DOCK n.d. spectrophoto-

metric assay 

(Km < 2 mM) 

8 / 

8 / 

167,000 

25, Km = 30 M

[ww]

peroxisome proliferator-

activated receptor,  

PPAR ,   (R) 

L, 

QSAR

(NN) 

SPECS 

(229,658) 

CDK 

[xx] 

low lipophilicity 

(SlogP), visual 

inspection 

reporter gene 

assay (relative 

activation of 

PPAR  at 100 

M > 0) 

4 / 

9 / 

229,658 

26, relative act. 0.54 at 100 M

[yy]

peroxisome proliferator-

activated receptor,  

PPAR 

(R) 

R TheraSTrat in-

house database,

Chembank 

(~14,000) 

AutoDock post-filtering: focus

on sulfadimidine and

sulfonylureas 

FP-based PPAR

assay, reporter

gene assay 

(activation of 

PPAR  at 100 

M > 1) 

6 / 

6 / 

~14,000 

27, IC50 = 8 nM, act. ~11 

[zz]

peroxisome proliferator-

activated receptor,  

PPAR   agonists,  

(R) 

L, R Maybridge 

(62,000) 

Catalyst

(shape-based

search), Gold

n.d. scintillation 

proximity assay

(n.d.) 

1 / 

163 / 

62,000 

28, IC50 = 175 nM 

[aaa]

phospho-diesterase  

PDE-1,  

PDE-5  

(E)

L, P, 

QSAR

CART

[bbb]

SPECS 

(subset 50,520)

SPSS [ccc] 

Answer-

Tree

Catalyst, 

Cerius  

Ro5, MW < 500, H-

acceptors < 10, 

H-donors < 5,  

AlogP < 6,  

b_rot < 12, 

visual inspection 

n.d.  

(IC50 < 10 M)

7 / 

19 / 

43,365 

29, PDE-1: IC50 = 1.9 M, PDE-5: IC50 = 0.7

M

[ddd]

protein phosphatase 2C,

PP2C 

(E)

R NCI Diversity Set

[eee] 

(1,990) 

AutoDock logP  6.0 (estab-

lished after testing the

first 40 cpds) 

radioactive assay

(inhibition >50%

at 100 M)

3 / 

100 / 

1990 

30, inhibition 82% at 100 M

[fff]

SARS-CoV protease,

3CLpro

(E)

R n.d. 

(361,413) 

EUDOC [ggg] commercial availabil-

ity, number of chiral

centres, poor solubil-

ity or cell permeabil-

ity 

SARS-CoV cell-

based inhibition

assay 

1 / 

12 /  

361,413 

31, EC50 = 23 M
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(Table 1. Contd….) 

Target 

(Class [a]) 

VS [b] Database 

(Size) 

Software 

Main

Auxiliary 

Filter [c] Assay  

(Hit Criteria) 

Active / 

Tested / 

Screened 

Representative Hit 

 cpd., Activity 

Ref. 

SARS-CoV protease 

3CLpro

(E)

R Maybridge 

(58,855) 

Gold ranking: external H-

bond energy term 

FRET  

(inhibition  

>50% at 10 M)

2 / 

50 / 

58,855 32, inhibition 61 % at 10 M

[iii] 

SARS-CoV protease 

3CLpro

(E)

R Maybridge 

(59,363) 

DOCK,

Idea 2.0 

[jjj] 

Ro5, post-filter: H-

bonding pattern 

fluorescence 

based inhibition

assay  

(IC50 < 30 M)

21 / 

93 / 

59,363 

33, only core structure given 

[kkk]

Tat – TAR RNA 

interaction 

(RNA) 

P SPECS 

(229,658) 

CATS3D / 

SQUID 

(pharma- 

cophore query

method) 

selected 20,000 most

drug-like 

FRET  

(IC50 < 500 M)

2

19 / 

20,000 

34, IC50 = 46 M

[lll] 

T-type calcium  

channel 1H

(C) 

L, P Maybridge, 

comm. avail. ion

channel database

(63,495) 

Catalyst visual inspection voltage clamp 

assay (inhibition

>50% at 100 M)

4 / 

25 / 

63,495 

35, inhibition 98% at 100 M

[mmm]

[a] GPCR G-protein coupled receptor, R receptor, E enzyme, PP protein-protein interaction, C channel, U unknown, n.d. not disclosed.
[b] R receptor-based, PR pseudo-receptor-based, L ligand-based, P pharmacophore-based, H homology model-based. 

[c] ADMET absorption-distribution-metabolism-excretion-toxicity, b_rot number of rotatable bonds, h_acc hydrogen bond acceptors, h_don hydrogen bond 
donors, HAC heavy atom count, logP log of water/octanol partition coefficient, MW molecular weight, Ro5 Lipinski’s rule of five. 

[d] Schuster, D.; Maurer, E.M.; Laggner, C.; Nashev, L.G.; Wilckens, T.; Langer, T.; Odermatt, A. J. Med. Chem., 2006, 49, 3454. 
[e] http://www.accelrys.com/products/catalyst/ 

[f] Evers, A.; Klabunde, T. J. Med. Chem., 2005, 48, 1088. 
[g] http://www.mdl.com/products/experiment/available_chem_dir/key_features.jsp 

[h] Wang, J.G.; Xiao, Y.J.; Li, Y.H.; Ma, Y.; Li, Z.M. Bioorg. Med. Chem., 2007, 15, 374.  
[i] Jackson, R.M. J. Comput. Aided. Mol. Des., 2002, 16, 43. 

[j] Rella, M.; Rushworth, C.A.; Guy, J.L.; Turner, A.J.; Langer, T.; Jackson, R.M. J. Chem. Inf. Model, 2006, 46, 708. 
[k] http://www.cambridgesoft.com/databases/details/?db=1 

[l] Mahmoudi, N.; de Julian-Ortiz, J.V.; Ciceron, L.; Galvez, J.; Mazier, D.; Danis, M.; Derouin, F.; Garcia-Domenech, R. J. Antimicrob. Chemother., 2006,
57, 489. 

[m] http://blaster.docking.org/zinc/ 
[n] Irwin, J.J.; Raushel, F.M.; Shoichet, B.K. Biochemistry, 2005, 44, 12316. 

[o] http://www.maybridge.com/default.aspx 
[p] Alvesalo et al. [43]. 

[q] Trosset, J.Y.; Dalvit, C.; Knapp, S.; Fasolini, M.; Veronesi, M.; Mantegani, S.; Gianellini, L.M.; Catana, C.; Sundstrom, M.; Stouten, P.F.; Moll, J.K. 
Proteins, 2006, 64, 60. 

[r] http://www.chemcomp.com/software-sbd.htm 
[s] Cozza, G.; Bonvini, P.; Zorzi, E.; Poletto, G.; Pagano, M.A.; Sarno, S.; Donella-Deana, A.; Zagotto, G.; Rosolen, A.; Pinna, L.A.; Meggio, F.; Moro, S. 

J. Med. Chem., 2006, 49, 2363. 
[t] Foloppe, N.; Fisher, L.M.; Howes, R.; Potter, A.; Robertson, A.G.; Surgenor, A.E. Bioorg. Med. Chem., 2006, 14, 4792. 

[u] http://www.mdli.com/ 
[v] Guichou, J.F.; Viaud, J.; Mettling, C.; Subra, G.; Lin, Y.L.; Chavanieu, A.  J. Med. Chem., 2006, 49, 900. 

[w] Li, J.; Zhang, J.; Chen, J.; Luo, X.; Zhu, W.; Shen, J.; Liu, H.; Shen, X.; Jiang, H. J. Comb. Chem., 2006, 8, 326. 
[x] Li, J.; Chen, J.; Gui, C.; Zhang, L.; Qin, Y.; Xu, Q.; Zhang, J.; Liu, H.; Shen, X.; Jiang, H. Bioorg. Med. Chem., 2006, 14, 2209. 

[y] de Graaf, C.; Oostenbrink, C.; Keizers, P.H.J.; van der Wijst, T.; Jongejan, A.; Vermeulen, N.P.E. J. Med. Chem., 2006, 49, 2417. 
[z] Rummey, C.; Nordhoff, S.; Thiemann, M.; Metz, G. Bioorg. Med. Chem. Lett., 2006, 16, 1405. 

[aa] Desai, P.V.; Patny, A.; Gut, J.; Rosenthal, P.J.; Tekwani, B.; Srivastava, A.; Avery, M.. J. Med. Chem., 2006, 49, 1576. 
[bb] Polgar, T.; Baki, A.; Szendrei, G.I.; Keseru, G.M. J. Med. Chem., 2005, 48, 7946. 

[cc] http://www.specs.net/ 
[dd] Bohacek, R.; Boosalis, M.S.; McMartin, C.; Faller, D.V.; Perrine, S.P. Chem. Biol. Drug Des., 2006, 67, 318. 

[ee] http://www.tripos.com/index.php?family=modules,SimplePage,sybyl_unity 
[ff] Pirard et al. [41]. 

[gg] http://chembridge.com/chembridge/ 
[hh] Kenyon, V.; Chorny, I.; Carvajal, W.J.; Holman, T.R.; Jacobson, M.P. J. Med. Chem., 2006, 49, 1356. 

[ii] Zhang et al. [52]. 
[jj] Lu, Y.; Nikolewska-Coleska, Z.; Fang, X.; Gao, W.; Shangary, S.; Qiu, S.; Qin, D.; Wang, S.; J. Med. Chem., 2006, 49, 3759. 

[kk] http://www.chemdiv.com/ 
[ll] http://www.chemosoft.com/ 

[mm] Kim, S.Y.; Lee, Y.S.; Kang, T.; Kim, S.; Lee, J. Bioorg. Med. Chem. Lett., 2006, 16, 4898. 
[nn] González, D.-H.; Molina-Ruiz, R.; Hernández, I. MARCH-INSIDE version 2.0 (Markovian Chemicals “In Silico” Design), Chemicals Bio-actives Cen-

ter, Central University of “Las Villas”, Cuba, 2003.
[oo] Santana, L.; Uriarte, E.; Gonzalez-Diaz, H.; Zagotto, G.; Soto-Otero, R.; Mendez-Alvarez, E. J. Med. Chem., 2006, 49, 1149. 

O N

N

S

ClNH

N

NH

O

S

N

N

G1

G2

G3

G7G6

G5

G4

N

N

N

Cl

N
H
N

O

N
H

N

Cl

O

S



Successful Virtual Screening Mini-Reviews in Medicinal Chemistry, 2008, Vol. 8, No. 1    69

[pp] http://www.leadquest.com/ 

[qq] Saario et al. [44]. 
[rr] http://www.asinex.com/ 

[ss] http://www.accelrys.com/products/cerius2/ 
[tt] Manetti, F.; Magnani, M.; Castagnolo, D.; Passalacqua, L.; Botta, M.; Corelli, F.; Saddi, M.; Deidda, D.; De Logu, A. ChemMedChem, 2006, 1, 973. 

[uu] Jamois, E.A.; Lin, C.T.; Waldman, M.. J. Mol. Graph. Model., 2003, 22, 141. 
[vv] Manetti, F.; Magnani, M.; Castagnolo, D.; Passalacqua, L.; Botta, M.; Corelli, F.; Saddi, M.; Deidda, D.; De Logu, A. ChemMedChem, 2006, 1, 973. 

[ww] Irwin, J.J.; Raushel, F.M.; Shoichet, B.K. Biochemistry, 2005, 44, 12316. 
[xx] http://almost.cubic.uni-koeln.de/cdk/cdk_top 

[yy] Derksen, S.; Rau, O.; Schneider, P.; Schubert-Zsilavecz, M.; Schneider, G. ChemMedChem, 2006, 1, 1346. 
[zz] Scarsi, M.; Podvinec, M.; Roth, A.; Hug, H.; Kersten, S.; Albrecht, H.; Schwede, T.; Meyer, U.A.; Rucker, C. Mol. Pharmacol., 2006,

doi:10.1124/mol.106.024596. 
[aaa] Lu, I.L.; Huang, C.F.; Peng, Y.H.; Lin, Y.T.; Hsieh, H.P.; Chen, C.T.; Lien, T.W.; Lee, H.J.; Mahindroo, N.; Prakash, E.; Yueh, A.; Chen, H.Y.; Gop-

araju, C.M.; Chen, X.; Liao, C.C.; Chao, Y.S.; Hsu, J.T.; Wu, S.Y. J. Med. Chem., 2006, 49, 2703. 
[bbb] http://www.salford-systems.com/cart.php

[ccc] http://www.spss.com/ 
[ddd] Yamazaki, K.; Kusunose, N.; Fujita, K.; Sato, H.; Asano, S.; Dan, A.; Kanaoka, M. Bioorg. Med. Chem. Lett., 2006, 16, 1371. 

[eee] http://dtp.nci.nih.gov/branches/dscb/diversity_explanation.html 
[fff] Rogers, J.P.; Beuscher, A.E.; Flajolet, M.; McAvoy, T.; Nairn, A.C.; Olson, A.J.; Greengard, P. J. Med. Chem., 2006, 49, 1658. 

[ggg] Pang, Y.P.; Perola, E.; Xu, K.; Prendergast, F.G. J. Comput. Chem., 2001, 22, 1750. 
[hhh] Dooley, A.J.; Shindo, N.; Taggart, B.; Park, J.G.; Pang, Y.P. Bioorg. Med. Chem. Lett., 2006, 16, 830. 

[iii] Lu, I.; Mahindroo, N.; Liang, P.H.; Peng, Y.H.; Kuo, C.J.; Tsai, K.C.; Hsieh, H.P.; Chao, Y.S.; Wu, S.Y. J. Med. Chem., 2006, 49, 5154. 
[jjj] http://www.breadth.com.tw 

[kkk] Tsai, K.C.; Chen, S.Y.; Liang, P.H.; Lu, I.L.; Mahindroo, N.; Hsieh, H.P.; Chao, Y.S.; Liu, L.; Liu, D.; Lien, W.; Lin, T.H.; Wu, S.Y. J. Med. Chem.,
2006, 49, 3485. 

[lll] Renner, S.; Ludwig, V.; Boden, O.; Scheffer, U.; Gobel, M.; Schneider, G. Chembiochem, 2005, 6, 1119. 
[mmm] Doddareddy, M.R.; Choo, H.; Cho, Y.S.; Rhim, H.; Koh, H.Y.; Lee, J.H.; Jeong, S.W.; Pae, A.N. Bioorg. Med. Chem., 2007, 15, 1091. 

ing and has been applied to HIV-1 protease and Cox2 
screening. Compared to UNITY 3D pharmacophore finger-
prints [32], a reduced dependency on the query structure and 
a larger diversity of the hits was observed. PharmID [33], a 
program designed to generate pharmacophore models, super-
imposes sets of small molecules by determining their best 
matching conformations. This can be regarded as a flexible 
molecule – flexible template algorithm, although the con-
formations of the molecules have to be pre-calculated as 
well. Such a tool may improve the generation of search tem-
plates significantly.  

 Most frequently, a subclass of ligand-based screening 
methods is applied that utilizes molecular descriptors and 
fingerprints encoding for molecular structure, pharmacopho-
res, and physico-chemical properties (see Table 1). A prom-
ising development in this field has been reported by Bo-
nachera et al., who introduced 2D pharmacophore finger-
prints which take into account the concentration of differ-
ently protonated microspecies of a compound [34]. These 
fingerprints have the potential to avoid “activity cliffs” – i.e., 
compounds that are very similar with respect to their finger-
prints, but exhibit largely different biological activity – often 
seen in classical descriptor spaces. Another obstacle usually 
associated with descriptor-based similarity searches is their 
limited ability for “scaffold hopping”. Zhang and Muegge 
investigated this issue and came to the conclusion that atom 
pair descriptors and 3D pharmacophore fingerprints com-
bined with consensus scoring perform well in finding novel 
bioactive scaffolds [35]. Notably, some hits depicted in Ta-
ble 1 have been identified by using generic statistics software 
in combination with molecular descriptors, e.g. compounds 
(22) and (29). For a recent study of some statistical methods 
for virtual screening please read [36]. 

2.3. Drug-Likeness and Target-Specific Filtering of Da-

tabases  

 Despite all methodological differences, nearly all VS 
approaches include some kind of filtering before or after the 

actual VS run, usually implemented as cut-offs for physico-
chemical properties or pharmacophores. The filters are app-
lied in order to (i) enhance the probability to find hits com-
prising reasonable, drug-like structures, (ii) adjust the screen-
ing results to target-specific requirements, and (iii) reduce 
the computational demands by pre-filtering large databases. 

  Most of the virtual screening applications cited in Table 1
have been performed on databases of available compounds. 
Since these virtual compound collections usually contain a 
lot of non-druglike structures, a filter ensuring at least some 
degree of drug-likeness is inevitable. For example, if drug-
likeness is a criterion, structures like (30) would have to be 
examined carefully. 

  Extrapolating the study of Fink et al. [37] to larger mo-
lecular weights, it is expected that databases of known com-
pounds contain a larger proportion of acyclic and aromatic 
structures, a much lower proportion of fused heterocycles, 
but a larger proportion of heteroaromatic structures com-
pared to the unbiased, theoretical chemical space. Screening 
such databases, either in-vitro or in-silico, will produce sets 
of compounds with a similar bias. For example, nearly all hit 
structures shown in Table 1 contain two or more (hetero-) 
aryl groups. The property distribution suitable for a specific 
target may be rather different, requiring a filter focusing the 
compounds to be screened towards other skeletons.  

 This issue was investigated in-depth by Emanuele Perola 
for the target class of kinases [38]. He showed that true and 
false positives from kinase virtual screening, and otherwise 
known active molecules differ significantly: (i) true and false 
positives tend to have a larger molecular weight than known 
active compounds, (ii) false positives tend be more polar 
than true positives and false negatives, (iii) false positives 
showed an increased number of pseudo-cis conformations of 
acyclic amides, and most important (iv) false positives fail to 
form essential hydrogen bonds with the protein backbone. 
Using the last two criteria as post-filters for virtual screen-
ing, the ranking lists were dramatically down-sized, while at 
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the same time true positives were highly enriched. As 96.5% 
of 444 experimental ligand-kinase complex structures in the 
PDB are assigned to three types of ligand motifs which are 
hydrogen bonded to the kinase hinge region, Perola recom-
mended a two step protocol for kinase virtual screening based 
on protein-ligand docking: first, using constrained docking 
into the kinase active site, enforcing two of three essential 
hydrogens bonds with the protein backbone. Second, priori-
tizing the resulting hit list according to the three preferred 
protein-ligand binding motifs. The author concluded that 
false positives are mostly generated because docking prog-
rams and scoring functions are unable to identify critical 
interactions and to treat them accordingly. 

 In general, this example highlights the importance of 
integrating target-specific knowledge into the virtual screen-
ing runs, either by tweaking the parameters of virtual screen-
ing, pre-filtering of databases to be screened, or enforcing 
specific interaction motifs during protein-ligand docking. 
Finally, a convenient side-effect of pre-filtering is the reduc-
tion of computing power needs by limiting the number of 
compounds to be screened. 

2.4. Homology Models and Induced Fit 

 Usually the choice of a particular method for virtual scree-
ning is dictated by the data available. Uncertainties, how-
ever, remain regarding the value of homology models and 
the modelling of induced fit of protein-ligand complexes. 
With both these methods, the results of virtual screening may 
be compromised by potentially incorrect protein conforma-
tion. 

 Recently some evaluation studies concerning that issue 
have been published: for example, Bissantz et al. compared 
receptor-based and ligand-based methods for designing a 
small focused 5-HT2C library starting from ~10,000 pre-
filtered compounds (MW  400 D, one basic amine, no 
negative charge, at least one aromatic ring, 207 active com-
pounds) [39]. Different ligand-based similarity searches 
showed a large variation in enrichment of the active com-
pounds, ranging from less-than-random to about 3.2-fold 
among the 2000 top-scoring molecules. Docking into a ho-
mology model of 5-HT2C using different programs and scor-
ing functions showed more consistent enrichment, ranging 
from 1.4-fold to 2.2-fold, and retrieved more diverse com-
pounds. The authors concluded that one should not base a 
compound selection for experimental testing on a single 
similarity search. Evers et al. carried out a similar investiga-
tion on the 1A, 5HT2A, D2, and M1 receptors [40]. Again, 
the conclusion was that receptor-based methods achieve a 
somewhat lower enrichment than ligand-based methods.  

 Similar findings were reported for potassium channels. 
Pirard et al. compared similarity-based vs. ligand- and pro-
tein-based pharmacophores for virtual screening for Kv1.5 
potassium channel blockers (see Table 1) [41]. A query us-
ing a pharmacophore derived from a homology model re-
vealed 3102 virtual hits, but did not return any known Kv1.5 
blockers. Filtering (removal of reactive groups etc.) and vis-
ual inspection reduced the number of virtual hits to 244. 
These compounds were tested in-vitro, 19 of them were ac-
tive, and 5 showed an IC50 below 10 M. Similarity searches 
within the same database, using the verified hits as a query 

yielded a significant number of analogs for the five hits, 
which had not been found by the protein-based screening. 
The authors note that the structure-based approach outper-
formed ligand-based approaches in terms of hit rates and 
chemotypes identified. However both methods are comple-
mentary and should be applied in parallel. 

 Kairys et al. showed that there is no clear correlation 
between target-template similarity in homology modelling 
and enrichment in virtual screening [42]. The authors con-
clude that this is likely to be caused by details within the 
binding site, which are not detected by broad measures of 
molecular similarity. Notably, they found that docking in the 
template protein itself is often as successful as docking into 
the corresponding homology model. This is inline with the 
result of Alvesalo et al. (see Table 1 and [43]) who per-
formed receptor-based virtual screening using FlexX on Ba-
cillus subtilis RNA methyltransferase, a protein homologous 
to the actual target, Chlamydia pneumoniae dimethyladeno-
sine transferase. A small library of 2000 top-scoring com-
pounds was inspected visually, 33 compounds were selected 
for testing, and 8 turned out to be active on the actual target. 
This demonstrates that off-target hits – usually regarded as 
an annoying artefact – can be used to perform database que-
ries for targets with unknown 3D structure. However, one 
has to be aware that homology model screening might lead 
to unexpected results as well (see e.g. Table 1 and [44]). 

 Induced fit of protein-ligand complexes is a phenomenon 
currently not considered in most virtual screening applica-
tions due to limitations in computing power and uncertainty 
about the effects on enrichment. In principle, the same ques-
tion arises in homology modelling and induced fit modelling: 
is the technique really accurate enough to improve the results 
of virtual screening, or does it just add some noise? The gen-
eral importance of induced fit is apparent from an investiga-
tion of the PDB by Boström et al. who concluded that – al-
though similar ligands bind in a similar fashion in most cases 
– it is likely to find altered receptor conformations [45]. 
Sherman et al. reported that an induced fit virtual screening 
protocol improved the retrieval of known ligands of, for ex-
ample, p38 MAP kinase from 3 to 14 within the top-scoring 
1% of a database containing 25,000 decoy molecules [46, 
47]. Moitessier et al. reported an induced fit docking and 
scoring method for -Secretase (BACE1) which showed a 
promising predictive power [48]. In contrast, Polgár and Ke-
serü concluded from an investigation using FlexE [49] with 

-Secretase and JNK-3 as targets, that the incorporation of 
protein side-chain flexibility, and even the consideration of 
slight loop movements does not lead to a significant im-
provement in the success rate of virtual screening [50]. In 
general, induced fit modelling is one of the major directions 
of current research in virtual screening. 

3. CONCLUSIONS 

 As demonstrated by a large number of publications, 
vHTS is able to generate useful hit molecules for a large 
variety of targets, ranging from unknown targets to targets 
with several protein structures being available. A variety of 
methods have demonstrated their utility for successful virtual 
screening. There is no virtual screening-specific preference 
for any biological assay format. So, what conclusions can be 
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drawn from the surveyed literature with respect to success of 
virtual screening?  

Essential: Filtering for Drug-Likeness 

 Medicinal chemists usually expect the vHTS approach to 
yield hits which allow for a further development with respect 
to their chemical structures. Most of the databases available 
contain a significant amount of undesirable structures. For 
example, only compounds matching Lipinski's Rule-of-Five 
criteria [51] may be extracted from the chosen database prior 
to the vHTS run, metal complexes may be removed, or com-
pounds containing undesired functional groups may be ex-
cluded. As a post-filter of the VS run, a visual inspection is 
recommendable to remove compounds which (i) are syn-
thetically not feasible, (ii) may cause assay artefacts (fluo-
rescent compounds, fluorescence quenchers, scintilators, 
reactive compounds, etc.) or (iii) are very unlikely to be true 
actives due to unreasonable binding modes or similar. The 
application of filters is not limited to databases consisting of 
known compounds, but extends to combinatorial libraries as 
well [52]. Additionally, filters can be applied in order to ex-
clude compounds which are likely to interact with anti-
targets, e.g., with the hERG channel [53]. 

Essential: Target-Specific Optimization 

 Using target-specific information to optimize the screen-
ing setup is indispensable for using virtual screening in a 
reliable fashion. For example, as a consequence of linear 
models implemented in most vHTS methods, their applica-
tion leads to an artificial preference for some specific chemo-
types – e.g. they may prefer a high number of H-bonds or 
large molecular weights [8, 38, 54] – which have to be coun-
tered by appropriate constraints, e.g. on MW, or number of 
donors and acceptors, and/or other suitable pre- and post-
filters. This is done in basically all of the case studies cited in 
Table 1. The detection of false positives from protein-ligand 
docking may be performed automatically as well, e.g. by 
using statistical methods as post-filters [55] or by applying 
target-specific pharmacophore constraints during screening 
[28]. This is very important for some target classes, e.g. 
kinases [38]. In general, well characterized targets allow for 
the design of more successful virtual screening approaches 
(see e.g., [56]).  

Beneficial: Using Multiple Methodologies 

 In general, it is hard to predict which virtual screening 
methodology or software tool performs best for a particular 
target. In particular, despite all methodological advances 
there is still no gold standard tool for protein-ligand docking 
[9, 57, 58]. Applying multiple methodologies clearly limits 
the effect of choosing a potentially less successful approach, 
although merging the results of too many different screening 
runs may dilute the true positives within the final ranking 
list. For some targets, e.g., homology models, it is highly 
advisable to use several different types of virtual screening 
approaches, most commonly by combining pharmacophores 
and protein-ligand docking. As a result, a flexible software 
basis is desirable for combining different approaches and 
optimizing the virtual screening setup. Regarding induced fit 
modelling, no recommendation can be given since this meth- 

odology is still in the evaluation phase. Future methods, 
however, that model this effect appropriately will be highly 

beneficial. 

Useful: Screening Databases of Commercially Available 

Compounds 

 Databases containing compounds which are either com-
mercially available or have been described in literature differ 
significantly from the theoretical chemical space in terms of 
composition and size [37]. In the majority of the case studies 
published in the last year, databases consisting of commer-
cially available compounds were screened. It is reasonable to 
assume that these databases were chosen for the reason of 
the straightforward accessibility of the compounds. In con-
trast to molecules from de-novo design [59], hits from data-
bases containing available compounds allow for a “rapid 
prototyping”, i.e., a fast experimental testing. Virtual combi-
natorial libraries might be regarded as an alternative to data-
bases of known compounds. Combinatorial libraries can be 
constructed in such a way that they e.g., systematically cover 
the scope of particular structural classes. If enumeration of a 
combinatorial library, i.e., the generation of molecular struc-
tures for all members of the library, is necessary, its size has 
to be limited and some focusing is inevitable. The availabil-
ity of hit compounds on the respective target – potentially 
obtained by screening databases of known compounds – fa-
cilitates that task. 

Less Important: Target Class 

 The target class determines the choice of particular meth-
ods for in-silico screening and experimental testing, but does 
not determine the outcome of virtual screening. Table 1

shows that virtual screening is able to identify hits for a large 
variety of target classes, including receptors, channels, met-
allo-enzymes, protein-protein interaction, and even unknown 
targets. If the methodology is carefully adjusted to the intrin-
sic properties of a specific target, virtual screening offers a 
high probability for success. For example, homology models 
can be suitable targets, if several active compounds are 
known that help to validate the homology model. More sur-
prisingly, even cross-screening approaches, e.g. reported by 
Alvesalo et al. [43], are able to deliver reasonable results. 

 In summary, the probability for being successful with 
vHTS increases with knowledge about the target, which al-
lows to optimize virtual screening setup and parameters. 
Therefore virtual screening is not a technology that works 
out-of-the-box. However, with expertise from chemistry and 
biology being available, virtual screening is one of the fastest 
and most cost-effective methods to generate hit compounds 
which enable the initiation of medicinal chemistry programs, 
irrespective of the target class. Hence a close interaction of 
all disciplines in a team is a key prerequisite for exploiting 

the full potential of this method. 
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ABBREVIATIONS 

CART = Classification and regression tree 

CoMFA = Comparative molecular field analysis 

LDA = Linear discriminant analysis 

MLR = Multiple linear regression 

NN = Neural network 

QSAR = Quantitative structure-activity relationship 

Ro5 = Lipinski’s Rule of Five 

RP = Recursive portioning  

vHTS = Virtual high-throughput screening 

VS = Virtual screening 
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